
Practice 1: Animal Model of CO Poisoning and Morphological Techniques

morphological laboratory centre

Purposes and Requirements

- 1. Mastering basic morphological techniques and skills used in the experiments
- 2. Understanding the basic procedures of establishing animal model of carbon monoxide poisoning
- **3.** Understanding how to write an experimental paper.
- 4. Knowing about photomicrography and image analysis technique with computers
- 5. Knowing about applications of laser scanning confocal microscope

Experimental Design

Practice Contents

- Establishing animal model : carbon monoxide poisoning of mice
- Paraffin sectioning techiques: biopsy, fixation, embedding and sectioning
- Nissl staining , HE staining and observing the slides
- Knowing about photomicrography and image analysis technique with computers
- Knowing about applications of laser scanning confocal microscop

1.Establishing animal model----CO poisoning of mice

Experimental Principles

Tissue Hypoxia :

C0 much more easily bind with hemoglobin (to form carboxyhemoglobin ,HbCO)and difficult to relaese, which effectively reduce the oxygen-carrying capacity of the blood.

Central nervous system is extremely sensitive to hypoxia

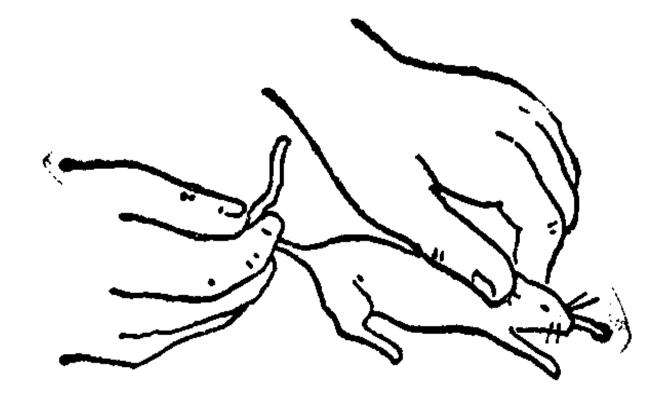
Materials

animal: mice

- intruments: scalpels 、 surgical scissors 、 dissecting forceps , wide-mouth bottle
- reagents: carbon monoxide

Procedures

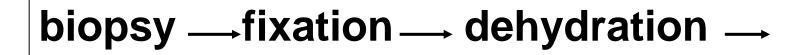
- 1.Mice are divided into two groups randomly.
 - The experimental mice are kept into wide-mouth bottle, they inhale CO until irritability and difficulties in breathing appear, then fresh air is given to recover them.


Control group : no treatment

2. Repeated several times until mice are poisoned to death at the end of the experiment on the fourth day.

Kill the control mice by the way of cervical vertebra dislocation

3. Incise head skin , open the skull until brain tissues expose fully



- 4. Remove intact brain tissue, and observe gross anatomical alterations before it is immersed into fixatives.
- Remember to compare experimental group with control group:
 - * color
 - * anfractuosity
 - * gyrus
 - * hemorrhage
- Then brain tissue is kept in formalin fixative for future use

2.Paraffin Technique

Primary Steps:

clearing $_$, embedding $_$,

sectioning → staining

Aims of Experiment

- To know about the procedures of paraffin technique
- To master basic methods and skills in paraffin embeddding and sectioning

Technique Principles

- In this technique, tissues are fixed, and embedded in wax. This makes the tissue hard, and much easier to cut sections from.
- The sections are then stained, and examined with the light microscope to help distinguish the components of the tissue.
- But wax is not soluble in water or alcohol. So first the tissue has to be dehydrated and then the alcohol in the tissue needs to be replaced with xylene.

Experiment materials

1. Reagents

paraffin wax, formaldehyde(at neutral pH), alcohol, xylene

2. Instruments

microtome、device for mounting thermostat incubator、embedding frame, glass slide and cover slip

Details in Procedures

- 1.Biopsy
- ✓ Fresh tissue
- ✓Keep tissues and cells morphological intact
- ✓ Prevent autolysis
- Cut into square tissue blocks (about $1 \times 0.5 \times 0.2$ cm)
- ✓Immerse into fixatives soon

2.Fixation

✓The fixative most commonly used is a 10%

aqueous solution of formaldehyde, at neutral pH.

✓4 % paraformaldehyde

```
✓Volume: 1:4。
```

```
✓ Proper time
```

✓Washing thoroughly after fixation

4. Dehydration

Replacing water in the sample with alcohol. This is achieved by passing the tissue through increasing concentrations of ethyl alcohol (from 70 to 100%). 70% alcohol (2h) →80% (2h) →90% (1h) \rightarrow 95% alcohol | (1h) \rightarrow 95% alcohol | | (1h) $\rightarrow 100\%$ alcohol I (1h) $\rightarrow 100\%$ alcohol II (1h) \circ

Automatic Dehydrator

5 Clearing

Replaced alcohol in the sample with xylene, wintergreen oil.

6 Paraffin- infiltration Xylene is replaced by melted paraffin and the melted wax fills the spaces that used to have water in them. paraffin wax I (30min) → paraffin wax II (1h) → paraffin wax III (1h)

7 Embedding

The paraffin- infiltrated tissue is placed in fresh paraffin and the latter allowed to cool. After cooling, the tissue hardens, and can be used to cut slices.

Embedding Device

8、Sectioning

Use microtome to cut into thin sections, $3-10 \ \mu m$ in thickness.

9、Mounting

Spread slices in 45° water, then mount it on a microscope slide.

10、drying

Place the slide in oven 60 $^\circ\mathrm{c}$, 3~5h, until it sticks

firmly for future use.

Microtome(left) and Mounting Device(right)

Questions

- What are basic principles of paraffin techniques?
- Are there any other ways of making sections for the light microscope?

3.Nissl body staining technic

Outline

Objective and Requirement

- Principle
- Material
- Operating steps
- Result

Objective and Requirement

- Be familiar with the principle of Nissl body staining.
- ♦ Master the method of Nissl body staining.

Principle

- Nissl bodies consist of abundent RER and Ri. They are the site of protein synthesis of neurons.
- Body tissue is colorless. In order to observe and identify under LM, they should be dyed for increasing the contrast of organizational structure. Toluidine blue o is basic dye which can make Nissl bodies purplish blue.
- The morphologic and quantitative observation of Nissl bodies can judge neurons function as a symbol of status.

Material

staining fluid, alcohol, xylene, etc

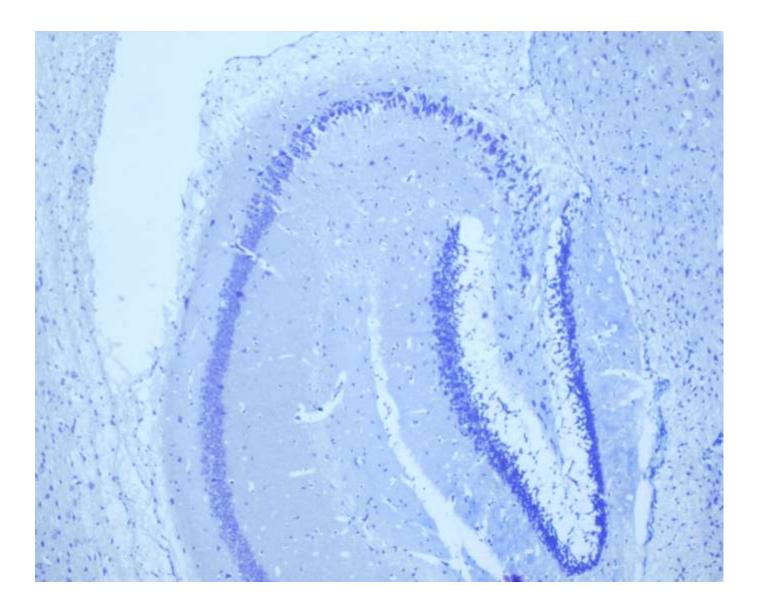
staining jar, forceps, filter paper, etc

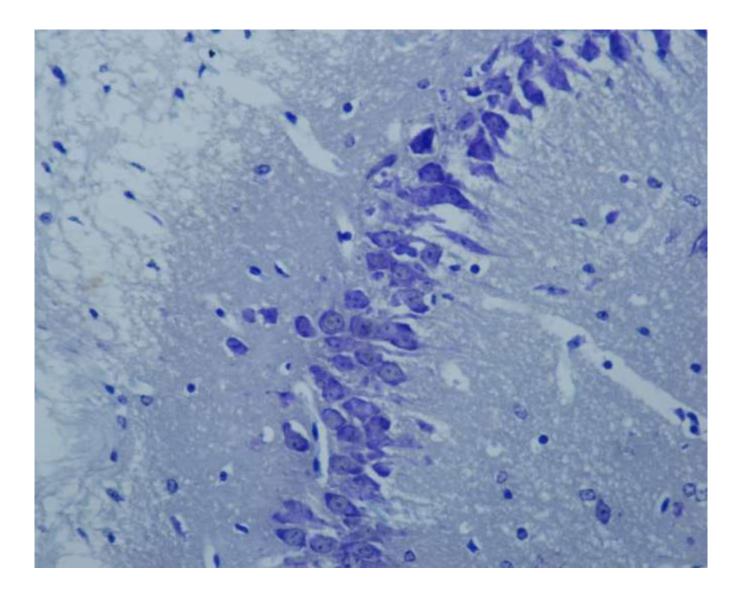
Operating steps

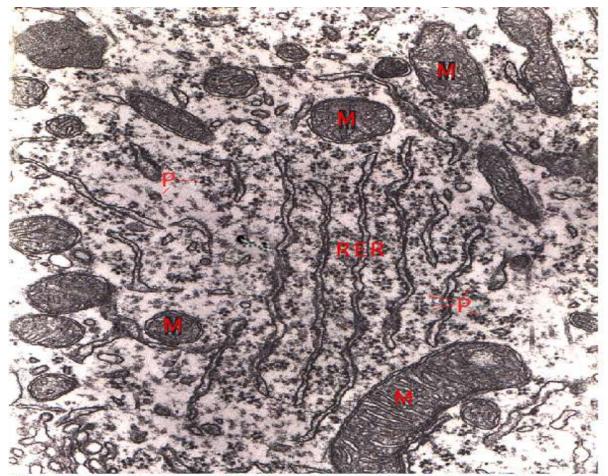
1. dewax: section dewax to water xylene 20min * twice **100% alcohol 10min** 90% alcohol 10min 80% alcohol 10min 10min 70% alcohol distilled water 5 min

2. dye : 20~30min (60°C incubator)

dye liquor preparation: toluidine blue o 0.5g 50% alcohol 100ml


Wash with distilled water after dyeing.




3. colour separation : 95% alcohol, 1-2 seconds, under LM

- 4. dehydration : 100% alcohol, 10 seconds, twice
- 5. transparentizing : xylene, 5 min, twice
- 6. slide sealing : by neutral gum
- 7. observation

Result

Neuronal cytoplasm with rough endoplasmic reticulum (RER) which corresponds to Nissl substance in the light microscope.

P = polyribosomes M = mitochondria

high mag ~ 70,000 X

4.H E staining echnique

Outline

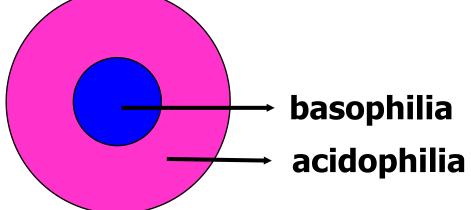
Objective and Requirement

- Principle
- Material
- Operating steps
- Result

Objective and Requirement

• Master the principle of HE staining.

◆ Master the method of HE staining.


Principle

Body tissue is colorless. In order to observe and identify under LM, they should be dyed for increasing the contrast of organizational structure.

HE staining: hematoxylin-eosin staining

Principle

(H) Hematoxylin: basic dye nucleus, RER, Ri → purplish blue
(E) Eosin: acid dye cytoplasm, extracellular matrix → red

Material

- formaldehyde, alcohol, xylene, paraffins, hematoxylin, eosin, etc
 - microtome, slicing drift drying temperature control, incubator, embedding box, glass slide, cover glass, staining jar, etc

Operating steps

1. dewax: section dewax to water xylene 20min (10min * twice) 10min 100% alcohol 100% alcohol 5min 90% alcohol 5min 80% alcohol 5min 5min 70% alcohol distilled water

2. hematoxylin staining : <u>20</u>min (58°C incubator) dye liquor preparation: hematoxylin **2g 100%alcohol 250ml** aluminum sulfate 17.6g double distilled water 750ml sodium iodate **0.2g** glacial acetic acid **20ml**

Wash away the floating color by tap water after dyeing.

3. colour separation: 0.5% hydrochloric acid alcohol, 1-2 seconds, under LM

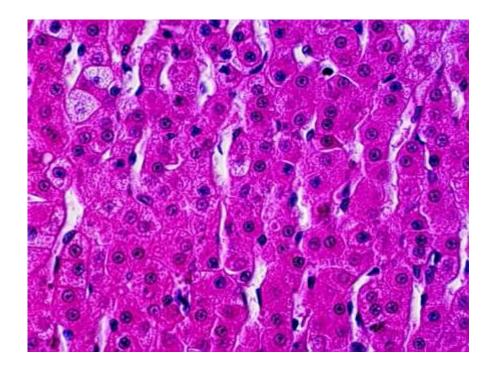
4. blue: wash about 10 min by tap water.

5. dehydration : 70% alcohol 15 min → 80% alcohol 15 min

6. eosin replication solution staining: about 1 min

dye liquor preparation: eosin replication solution 0.5g
 double distilled water 5ml
 glacial acetic acid a few drops

7. colour separation: 95% alcohol, 2min, under LM

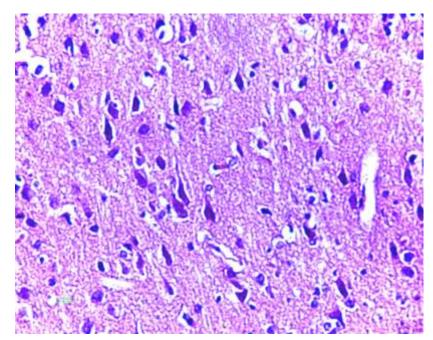

8. dehydration : 95% alcohol (5min) \rightarrow 100% alcohol I (10min) \rightarrow 100% alcohol II (10min)

9. transparentizing : xylene I (10min) → xylene II (10min)

10. slide sealing : by neutral gum, under LM

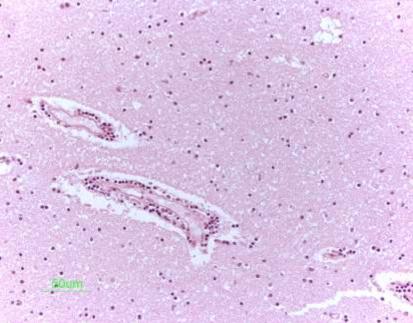
Result

Nucleus is dyed blue and cytoplasm is dyed red.



Result analysis

control group:


cortex neurons are multipolar neurons. They can divide into 3 types according to their shape.

- 1. pyramidal cells: the most neurons
- 2. granule cells
- 3. spindle cells

Result analysis

- experimental group:
- neurons in cerebral cortex degeneration and necrosis
- hyperplasia, swelling and cystose appearance with devouring lipid of microglia
- cerebrovascular expansion and hyperemia
- Cuff lymphocytic infiltration around the small blood vessels

